skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ali, Muhammad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this paper we present a study of distribution polarization doped AlxGa1−xN layers and their use in quasi-vertical configuration pn-diodes which exhibited a high breakdown field of ∼8.5 MV cm−1and a large forward current density (∼23 kA cm−2). We also establish their potential use in UVC light emitters by studying the optical emission from a quantum well inserted at the distribution polarization doped pn-junction interface. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. The proliferation of distributed energy resources has heightened the interactions between transmission and distribution (T&D) systems, necessitating novel analyses for the reliable operation and planning of interconnected T&D networks. A critical gap is an analysis approach that identifies and localizes the weak spots in the combined T&D networks, providing valuable information to system planners and operators. The research goal is to efficiently model and simulate infeasible (i.e. unsolvable in general settings) combined positive sequence transmission and three-phase distribution networks with a unified solution algorithm. We model the combined T&D network with the equivalent circuit formulation. To solve the overall T&D network, we build a Gauss-Jacobi-Newton (GJN) based distributed primal dual interior point optimization algorithm capable of isolating weak nodes. We validate the approach on large combined T&D networks with 70k+ T and 15k+ D nodes and demonstrate performance improvement over the alternating direction method of multipliers (ADMM) method. 
    more » « less
    Free, publicly-accessible full text available January 7, 2026
  3. Free, publicly-accessible full text available March 24, 2026
  4. Semantic segmentation algorithms, such as UNet, that rely on convolutional neural network (CNN)-based architectures, due to their ability to capture local textures and spatial context, have shown promise for anthropogenic geomorphic feature extraction when using land surface parameters (LSPs) derived from digital terrain models (DTMs) as input predictor variables. However, the operationalization of these supervised classification methods is limited by a lack of large volumes of quality training data. This study explores the use of transfer learning, where information learned from another, and often much larger, dataset is used to potentially reduce the need for a large, problem-specific training dataset. Two anthropogenic geomorphic feature extraction problems are explored: the extraction of agricultural terraces and the mapping of surface coal mine reclamation-related valley fill faces. Light detection and ranging (LiDAR)-derived DTMs were used to generate LSPs. We developed custom transfer parameters by attempting to predict geomorphon-based landforms using a large dataset of digital terrain data provided by the United States Geological Survey’s 3D Elevation Program (3DEP). We also explored the use of pre-trained ImageNet parameters and initializing models using parameters learned from the other mapping task investigated. The geomorphon-based transfer learning resulted in the poorest performance while the ImageNet-based parameters generally improved performance in comparison to a random parameter initialization, even when the encoder was frozen or not trained. Transfer learning between the different geomorphic datasets offered minimal benefits. We suggest that pre-trained models developed using large, image-based datasets may be of value for anthropogenic geomorphic feature extraction from LSPs even given the data and task disparities. More specifically, ImageNet-based parameters should be considered as an initialization state for the encoder component of semantic segmentation architectures applied to anthropogenic geomorphic feature extraction even when using non-RGB image-based predictor variables, such as LSPs. The value of transfer learning between the different geomorphic mapping tasks may have been limited due to smaller sample sizes, which highlights the need for continued research in using unsupervised and semi-supervised learning methods, especially given the large volume of digital terrain data available, despite the lack of associated labels. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. An updated fit to the interacting levelsν3andν6of CF3I has been evaluated in this work. 
    more » « less
    Free, publicly-accessible full text available November 13, 2025
  6. Targeted advertising remains an important part of the free web browsing experience, where advertisers' targeting and personalization algorithms together find the most relevant audience for millions of ads every day. However, given the wide use of advertising, this also enables using ads as a vehicle for problematic content, such as scams or clickbait. Recent work that explores people's sentiments toward online ads, and the impacts of these ads on people's online experiences, has found evidence that online ads can indeed be problematic. Further, there is the potential for personalization to aid the delivery of such ads, even when the advertiser targets with low specificity. In this paper, we study Facebook--one of the internet's largest ad platforms--and investigate key gaps in our understanding of problematic online advertising: (a) What categories of ads do people find problematic? (b) Are there disparities in the distribution of problematic ads to viewers? and if so, (c) Who is responsible--advertisers or advertising platforms? To answer these questions, we empirically measure a diverse sample of user experiences with Facebook ads via a 3-month longitudinal panel. We categorize over 32,000 ads collected from this panel (n = 132); and survey participants' sentiments toward their own ads to identify four categories of problematic ads. Statistically modeling the distribution of problematic ads across demographics, we find that older people and minority groups are especially likely to be shown such ads. Further, given that 22% of problematic ads had no specific targeting from advertisers, we infer that ad delivery algorithms (advertising platforms themselves) played a significant role in the biased distribution of these ads. 
    more » « less
  7. null (Ed.)
    Political campaigns are increasingly turning to targeted advertising platforms to inform and mobilize potential voters. The appeal of these platforms stems from their promise to empower advertisers to select (or "target") users who see their messages with great precision, including through inferences about those users' interests and political affiliations. However, prior work has shown that the targeting may not work as intended, as platforms' ad delivery algorithms play a crucial role in selecting which subgroups of the targeted users see the ads. In particular, the platforms can selectively deliver ads to subgroups within the target audiences selected by advertisers in ways that can lead to demographic skews along race and gender lines, and do so without the advertiser's knowledge. In this work we demonstrate that ad delivery algorithms used by Facebook, the most advanced targeted advertising platform, shape the political ad delivery in ways that may not be beneficial to the political campaigns and to societal discourse. In particular, the ad delivery algorithms lead to political messages on Facebook being shown predominantly to people who Facebook thinks already agree with the ad campaign's message even if the political advertiser targets an ideologically diverse audience. Furthermore, an advertiser determined to reach ideologically non-aligned users is non-transparently charged a high premium compared to their more aligned competitor, a difference from traditional broadcast media. Our results demonstrate that Facebook exercises control over who sees which political messages beyond the control of those who pay for them or those who are exposed to them. Taken together, our findings suggest that the political discourse's increased reliance on profit-optimized, non-transparent algorithmic systems comes at a cost of diversity of political views that voters are exposed to. Thus, the work raises important questions of fairness and accountability desiderata for ad delivery algorithms applied to political ads. 
    more » « less
  8. Abstract Extreme temperature conditions seriously impair male reproductive development in plants; however, the molecular mechanisms underlying the response of anthers to extreme temperatures remain poorly described. The transcription factor phytochrome-interacting factor4 (PIF4) acts as a hub that integrates multiple signaling pathways to regulate thermosensory growth and architectural adaptation in plants. Here, we report that SlPIF4 in tomato (Solanum lycopersicum) plays a pivotal role in regulating cold tolerance in anthers. CRISPR (clustered regularly interspaced short palindromic repeats)–associated nuclease Cas9-generated SlPIF4 knockout mutants showed enhanced cold tolerance in pollen due to reduced temperature sensitivity of the tapetum, while overexpressing SlPIF4 conferred pollen abortion by delaying tapetal programmed cell death (PCD). SlPIF4 directly interacts with SlDYT1, a direct upstream regulator of SlTDF1, both of which (SlDYT1 and SlTDF1) play important roles in regulating tapetum development and tapetal PCD. Moderately low temperature (MLT) promotes the transcriptional activation of SlTDF1 by the SlPIF4–SlDYT1 complex, resulting in pollen abortion, while knocking out SlPIF4 blocked the MLT-induced activation of SlTDF1. Furthermore, SlPIF4 directly binds to the canonical E-box sequence in the SlDYT1 promoter. Collectively, these findings suggest that SlPIF4 negatively regulates cold tolerance in anthers by directly interacting with the tapetal regulatory module in a temperature-dependent manner. Our results shed light on the molecular mechanisms underlying the adaptation of anthers to low temperatures. 
    more » « less